

	Time: 45 minutes
Calculator Free (25 marks)	
1. [7 marks]	
Differentiate the following functions and simplify:	
a) $y = (1 + 3x^3)^5$	[2]

b) $y = \sqrt{\pi} e^{x^2 + 1}$ [2]

c)
$$y = (1 - x^2)e^{4x}$$
 [3]

2. [5 marks]
a) Consider
$$f(x) = \frac{(x-2)^2}{e^{x-2}}$$
, clearly show that $f'(x) = \frac{-x^2 + 6x - 8}{e^{x-2}}$ [3]

b) Determine the x-ordinates of the point(s) where the gradient of the curve is zero. [2]

3. [3 marks] Determine the equation of the tangent to the curve $y = 3x^2 + e^{2x} + 3$ at the point $(1, 6+e^2).$

4. [3 marks] The curve $y = a\sqrt{x} + 3x$ has a gradient of 4 when x = 1. Calculate the value of '*a*'.

5. [4 marks] If $z = 6 - x^2$ and $y = \sqrt{z}$ determine: a) $\frac{dz}{dx}$

[1]

6. [3 marks] Given $y = x + \sqrt{x^2 - 4}$ show that $\frac{d^2 y}{dx^2} = \frac{-4}{\left(\sqrt{x^2 - 4}\right)^3}$

<u>Calculator Section</u> (10 marks)

7. [6 marks]

The temperature, $T {}^{0}C$, of a bronze casting t seconds after being removed from a kiln was modelled by $T = T_0 e^{-0.0034t}$ for $0 \le t \le 800$.

a) How long, to the nearest second, did it take for the initial temperature of the casting to halve? [2]

b) Determine the initial temperature of the casting, given that it had cooled to $787 {}^{\text{o}}C$ after one minute. [2]

c) Can the above rate of change model be used to calculate how long it takes the temperature of the casting to fall below $40^{\circ}C$? Explain your answer. [2]

8. [4 marks]

The rate of decay of a radio-active material is proportional to the amount present

i.e. $\frac{dM}{dt} = -kM$ where *M* is the amount of radio-active material in grams and *t* is in years.

Given that it takes 100 years for ten grams of the materials to decay to eight grams, determine:

a) the mass present after 50 years, if ten grams were originally present

b) the material's half-life.